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A unified summary is presented of the mathematical approach developed by 
McDowell for employing perturbation theory to correct for basis-set incom- 
pleteness in ab initio SCF calculations. Revised expressions for the corrections 
to the wavefunction both in terms of orbitals and spin-orbitals are presented 
with explicit incorporation of the spin variables. Employing H20 as an 
example, we show that this approach is considerably more powerful for 
computing molecular energies with standard basis sets than was indicated by 
previous work. In particular at the higher levels of approximation it accurately 
reproduces the effect of polarization functions in sets such as 6-31G* and 
6-31G**. The equilibrium molecular structure of H20 was also computed by 
this approach and found to give good accuracy. In each case perturbing 
functions coupled to both occupied and virtual orbitals are required for 
acceptable results. 
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I. Introduction 

A central feature of carrying out atomic and molecular ab initio quantum calcula- 
tions by any of the basis-set expansion methods is first gauging the degree of 
convergence of the basis, and then increasing the number of basis functions as 
needed to achieve the desired level of accuracy. This is at once both one of the 
greatest strengths and weaknesses of such methods since, although no basis is 
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ever perfectly complete, comparison of computed properties in two or more 
differing basis sets often permits an a priori estimate of the reliability of the final 
result. 

Increasing the size of a molecular basis generally consists of adding additional 
functions, typically diffuse or "polarization" functions of higher atomic angular 
momentum per atom than in the original set. These however make only a small 
change in the overall molecular wavefunction. In particular the addition of 
polarization functions, such as those of d, f and g symmetry, require considerable 
additional computational effort which in many cases makes only very small 
contributions to the wavefunction. This leads logically to the concept of employing 
perturbation theory to estimate the effect such added functions would have, 
without performing a full calculation in the larger basis. To our knowledge the 
first attempt to treat added functions by perturbative methods was made by Sadlej 
[1-3], who reported test calculations on the He and Be atoms. However the 
approach that now seems more generally applicable evolved in a series of papers 
by McDowell and coworkers [4-12]. The denouement of this work was a remark- 
able conclusion: the correction caused by including additional functions to the 
basis set in any SCF calculation, in terms of both the wavefunction and energy, 
can be found by solving a small set of inhomogeneous linear equations. Further, 
all quantities that appear in these equations are simply orbital energies and 
integrals of the same types as are formed in any conventional ab initio calculation. 
Simple test calculations on the He and Be atoms [11], the H2 and LiH molecules 
[ % l l ]  and on one polyatomic species [11], H20, were reported. Each of the 
three molecular cases employed only a small Slater basis perturbed by a single 
s gaussian function centered along each bond. 

The purpose of the present study is to determine whether the perturbation 
approach derived by McDowell and coworkers is sufficiently powerful and general 
to permit accurate calculations on molecules of practical interest while using 
standard (e.g. split-valence) basis sets. In this paper we first present a summary 
of the use of Green's functions in treating perturbative corrections to the basis 
set in SCF calculations. In particular we give an improved equation for the 
coefficients of the correction-perturbation functions in spin-orbital form and a 
simplified expression for these functions in a paired-spin orbital representation. 
We then present a comparison of the results by the Sadlej and McDowell 
approaches for two test calculations on the He and Be atoms. The next section 
reports sample results for the energy of H20 employing relatively large basis sets: 
6-31G [13], 6-31G* [14], and 6-31G** [14]. Finally, since no property except the 
energy has thus far been computed by these perturbative procedures, we show 
their accuracy for determining the equilibrium molecular structure of H20 in the 
same range of basis sets. 

2. Summary of basis-incompleteness perturbation theory 

The basic problem in the nonrelativistic theory of atoms and molecules is to find 
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an approximate solution of the time-independent SchrSdinger equation 

H '~  = E~' .  (1) 

It is a common practice to start any investigation with the restricted Hartree-Fock 
procedure, which provides a qualitative understanding of many features of atomic 
or molecular systems. In order to understand the optical and chemical properties 
of a given system however it is usually necessary to perform an analysis beyond 
the Hartree-Fock model and to deal with a true many-body problem. 

In the perturbation approach the Hamiltonian of the system is split into two parts 

/4 : Ho+ V, (2) 

where Ho is a model Hamiltonian and V is a perturbation. The zeroth-order 
operator Ho is usually taken as the Hartree-Fock Hamiltonian. However at this 
step in the analysis we may assume only that Ho is a hermitian operator having 
a complete set of eigenfunctions, 

= Eor (3) Hor 

If r is a reasonable approximation to an exact solution �9 for a given state, the 
purpose of the perturbation approach is to generate the corrections to the 
zeroth-order approximation. Thus, performing the perturbation analysis one 
might find how a given set of r is related to the exact ~ .  However it is also 
possible to establish the relationship between the accuracy of the results obtained 
for various initial basis sets used for an expansion of the zeroth-order approxima- 
tion. From a practical point of view the latter aspect is of great importance and 
it is a main subject of the present paper. 

In ab initio studies of perturbative corrections much computational effort is 
concerned with performing the summations over all excited orbitals including 
those in the continuum. In order to avoid this difficulty several approaches have 
been introduced. A very convenient and efficient way of performing perturbative 
calculations is based on the so-called "perturbed-function" method introduced 
by Sternheimer [15]. This method eliminates the need for generating a complete 
set of single-particle states by introducing functions obtained as solutions of the 
appropriate differential equations [15-18]. 

Another approach which avoids the summation problems in the perturbation 
expansion is based on the time-independent Green's function formalism. The 
general definitions and properties of the Green's function operators as well as 
their close relation to the Brillouin-Ws perturbation theory defined in terms 
of the resolvent-operator technique are presented for example by Lindgren and 
Morrison [18]. 

One of the applications of the Green's function formalism is based on the 
possibility of  solving the Dyson's equation which relates the "real" Green's 
function (associated with the full Hamiltonian H )  and "zeroth-order" Green's 
function (associated with Ho) [19]. If  one can solve this equation it is then 
possible to obtain the eigenvalues of H by finding the poles of the Green's 
function operator (see, for example [20]). 
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Following McDowell 's idea [4-11] we have applied the Green's function formal- 
ism to evaluate perturbative corrections to basis incompleteness in molecular 
SCF calculations. (This is a different approach to this problem than the one 
proposed by Sadlej [1-3], which is based on variational conditions on the 
second-order approximation to the energy.) The details of McDowell 's approach 
may be found in [7-10] and especially [11]. To give an overview of the approach 
we first summarize here the crucial points of the simplest version of the theory 
in which the virtual spin-orbitals are not distinguished from all the other 
unoccupied one-electron states. 

The approach is based on a particular way of partitioning of the Hamiltonian 
of a given system. Namely, if the zeroth-order Hamiltonian is assumed to be the 
Fock operator, then the whole Hamiltonian may be written in the following form 

N 

H = Y~ [PF(i)P+ QF(i)Q] (4a) 
i 

+ E 1 _ ~  u,F(i) (4b) 
i<j rij i 
N 

+ Z [PF(i)Q+ QF(i)P]. (4c) 
i 

Here the partitioning technique has been applied, i.e. the entire functional space 
(spanned by all eigenfunctions of Eq. (3)) is split into two subspaces defined by 
the projection operators 

P--2 (5) 
i 

Q =  2 I~br)(qSr[ �9 (6) 
r ~ i  

In general the P space is associated with the eigenfunctions of H0 for a state 
under consideration while Q is its orthogonal complement. Due to the complete- 
ness of the set of eigenfunctions we have 

P +  O = 1. (7) 

In the case of the Hart ree-Fock approach the summation in Eq. (5) runs over 
all occupied spin-orbitals while the index r in the definition of Q (Eq. (6)) denotes 
the particle (unoccupied) states. 

The first two operators in Eq. (4a) are assumed to be the zeroth-order Hamiltonian 
while the remaining ones form the perturbation. The operators defined by Eq. 
(4b) represent the non-central part of the Coulomb interaction and is generally 
taken as a perturbation responsible for electron-correlation effects. Furthermore, 
the last two operators introduced above (Eq. (4c)) are new in comparison with 
the standard formulation and are the source of the corrections to the Hartree-Fock 
energy we are concerned with. 

As mentioned above the main aim of the approach presented here is to take into 
account all the energy corrections that are due to the fact that the zeroth-order 
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eigenvalue problem has been solved for an incomplete basis set. This means that 
in performing the analysis of the perturbation expansion the following should 
be kept in mind: 

1. Due to the definition of the Hartree-Fock potential the corrections to the 
energy appear at the second-order of the perturbation expansion. 

2. From among all terms produced by the perturbation operators in Eqs. (4b) 
and (4c) only those associated with the single excitations should be included. 

3. All terms arising from the double excitations should be excluded except those 
which might be described by coupled simultaneous single excitations (i.e. only 
those terms for which the factorization of the energy denominator is possible). 

4. All terms which added together give zero, due to the definition of the Hartree- 
Fock potential, should be extracted from the perturbation expansion. 

In order to identify the major corrections to the Hartree-Fock energy as well as 
to perform a summation of the most important terms along the series, the 
diagramatic technique of many-body perturbation theory has been applied 
[12, 18-20]. The Hartree-Fock scheme based on the summation of  the "single- 
excitation" diagrams which contribute to the second-order energy has been 
proposed by Caves and Karplus [21] (see also [22]). 

Following the rules presented above it was found that the "first correction" which 
contains the second-order and third-order Hartree-Fock-type graphs summed 
along the series has a form 

First correction = Z (qS~IF]xi). (8) 
i 

The "second-correction" representing all the new Hartree-Fock graphs appearing 
at the fourth-order also summed along the series has the form 

Second correction= ~ {<~jX, IXjX~>a + <XjX, I ~jX,>a- <X, IXj> 

(9) 

Here the subsciSpt A denotes the antisymmetrized two-electron integral. 

In Eqs. (8) and (9) X, is the correction function to the ith spin orbital and is 
defined as a solution of the equation 

rxi> = E 

( I~br)<~brxj I ~i~j>A 3 
+ J 

(10) 
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To avoid the difficulties of performing the explicit summation over the whole set 
of particle states in Eq. (10), the reduced Green's function operator G~ has been 
introduced. Thus, instead of Eq. (10) we have 

occ. 

IX,) = G~(e,)F[~b,)+ E [(Gg(s,)d)jId),Xj)A + (G~(s,)Xj[d),(aj)A]. (11) 
J 

The reduced Green's function operator is related to the zeroth-order Green's 
function operator as follows 

G;( ei) = QGo( si) (12) 

and has the spectral resolution 

G;(<)  = Z (13) 
r E i  - -  ~ r  

The reduced Green's function operator may be shown to be identical to the 
resolvent of the Brillouin-Wigner perturbation expansion [18]. 

It is seen from Eq. (11) that the correction function obeys an integral equation. 
However, taking advantage of the relation [5] 

r - - 1  r Go(ei) Go(ei) = Q (14) 

it is possible to obtain the differential equation. From the point of view of 
applications to molecular systems this step is particularly useful since the 
difficulties with the multicenter integrals over the Green's functions are thus 
avoided. Multiplying Eq. (11) from the left by G ~ ( e i )  -1 w e  have the differential 
equation 

oct. 

Q( e, - F)  Q [X,) + ~ [ ( Qqbj ] Xjqb,) A + ( Qxj ] ~j(Di) A] = OFI 4~J. (15) 
J 

The problem of solving these equations for X's is reduced to algebraic form if 
each correction function to a particular spin-orbital is expressed in terms of 
known functions. Thus, in practice each function Xk has the form 

s s 

Xk = Q Z Ck,f~3'k ------ Q Z ckaf~k, (16) 
a a 

where s is the dimension of the set of added basis functions f , ,  Yk denotes the 
spin function associated with kth spin-orbital and the Q operator in the expansion 
assures the orthogonality of the correction function to all occupied orbitals. 
Substituting expansion (16) into Eq. (15) and multiplying the whole expression 
from the left by fbi we get the linear inhomogeneous equations for the unknown 
coefficients era, 

Cia [( Qfbi ]ei -- F[ Qfai) + ( Qfb~ga~ I Qfa~qb') A] 
a 

+ o~. (1 - (~(b~, 0j)) ~, Cja[(QfbidPjlQfajd)i)a 
j a 

q-(QfbiQfaj[q~jqbi)a] = (Of~,lFi,b,). (17) 
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This expression is a more generally useful form of the equation for the spin-orbital 
coefficients than that given by McDowell and Lewis, Eq. (8) of [11], in which 
the spin variables were omitted. 

Since we are mainly interested in the applications of this approach to closed-shell 
systems, the transformation from spin-orbitals in Eq. (17) to orbitals is required. 
For a closed-shell system each orbital is doubly occupied, i.e. 

~bk~tPkyk for k =  1 , . . .  N ~ ( t ~ k a  for k =  1 , . . .  N / 2 .  
' t q~k/~ 

After performing the integration over the spin variables, the equation analogous 
to Eq. (17) has the form 

cia [(Ofb [si - FI Of., ) + ( Ofbt~i I Ofa~Pi) - 3( Ofb~O~ I tP,Of.) ] 
a 

N / 2  s 
+ ~ ~ cj,~[(Qfb~jlQfa~s~)-4(Qfb~sjlqs,Qfa) 

j # i  a 

+ (QfbQfa I qsfl~,)] = (OfblFIqs,). (18) 

The same procedure may be applied to obtain the expressions for the corrections 
to the energy. Thus, for a closed-shell system and with the correction functions 
orthogonal to the occupied orbitals, the corrections to the energy in terms of the 
known functions fa are determined by the expressions 

First correc t ion=2 h , +  B~.~+ ~ (2B~.q-B~j.j~) (19) 
i j ~ i  

Second correction = 2 2D,.i~ - Aii( h ,  + 3 Bii.ii) 
i 

N /2  [ 
+ ~ 4D~j, o - 2D~,j~ - A~(2Bu, U - Bq, ji + 4Bj~,j~ - 2Bj~,~) 

j ~ i  

- A~(h~, + 2Bi~,ij + B~,ji + 3Bj~,jj - B~j, o + 2Bo, j~ - B;j,~ 

N /2  

k # i  
k # j  

--Bki,jk--Bkjjk-]-4Bki, kj))] I . (20) 

In order to simplify the notation, the following matrices have been introduced 
in Eqs. (19) and (20): 

h: hi,--- (~,~lhlx,) 
, r N I 2  "] 

=Zc,.[(,/glhl/o)-Z/ (falq,,)(q, jlhlq,,)J, (21) 
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where h is an one-particle part of  the Fock operator; 

A: A u =-- (Xi IXj) 

a b 

B: By.re. =- (X,tPj i q,,.,qJ.) 

N,2 ] 
E ( L  I ~,,)(f~ I o,) (22) 
t 

=-2 C,oL<fo~,l,~o,,>- ~, <folo,><~,~,l (23) 

D: O,j..w ==- (XiXj IX.Ow) 

+ (fa Io.,)(fof~lemew) 

+ (LI 0,)(.s I @m)(faO~ [ ~',~w} 

+(fbl@l)(falqsm)(f~O, I @m~,w) 

- ( fo l~ , ) ( /b lO . , )  2 (/~1r162 �9 (24) 
k 

Note that in Eqs. (17)-(24) all integrals of the form (f~fb Ifcfa) which would be 
required in the analogous conventional calculation do not appear. Similarly in 
only one term are there any integrals over three of the added basis functions, i.e. 
integrals of  the form (f~fb Ifcq~). Of course the contributions of the added 
functions to the starting orbitals need not be computed in any case. These factors 
combined lead to the potential computational efficiency of this procedure. 

Note also that in these expressions the value of  N, the number of spin-orbitals, 
is not uniquely specified. In nearly all prior work N has been set equal to the 
number of occupied spin-orbitals. However it has been suggested [11] that an 
improved level of accuracy may be achieved when the virtual orbitals are included 
as well. This means that from among all particle states in definition (6) the virtual 
states are extracted and the correction functions are required to be orthogonal 
to these as well as tO the occupied states. Thus, in the more general version of 
this approach the operator Q in (16) is replaced by 

oac. 

o-~ Q+ Q'= 1 - Z 16,xr (25) 
i 
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where 

virt .  

o = X I , ;>(6 ; I  
J 

par t .  

o'= 16r>< rl 
r # v i r t .  

and the correction function is then defined as 

s virt.  , C ! 

Xk = • cTql6;)+Q E kafak" (26) 
j a 

The algebraic equations for the two sets of  coefficients cT, j and c~a may be obtained 
in the same way as above and are given explicitly by Eqs. (21) and (22) in [11]. 
In order to obtain the expressions for corrections to the energy, Eq. (26) is simply 
inserted into (8) and (9). 

Finally, five ways of approximating these procedures have been proposed by 
McDowell and Lewis [11], which may be summarized as follows: 

Approximation L Only occupied orbitals are included. In addition the coupling 
terms between correction function fb and all orbitals other than i (the double 
summation in Eq. (18)) are neglected. 

Approximation II. Only occupied orbitals are included. Correction func- 
t ion/other-orbital  terms are included. 

Approximation IIL Both occupied and virtual orbitals are included. Correction 
function/other-orbital  terms are neglected. 

Approximation IV. Both occupied and virtual orbitals are included. Only correc- 
tion function/other-orbital  terms connected to occupied orbitals are included. 

Approximation V. Both occupied and virtual orbitals are included throughout. 
All terms are included. 

Therefore in the following we shall be concerned not only with the accuracy of 
the overall perturbation method, but also with these individual levels of  approxi- 
mation. 

3. Sample calculations 

3.1. Comparison of methods for He and Be 

As noted above, the first perturbative scheme of this type was proposed by Sadlej 
[1-3]. He also reported test calculations on the He and Be atoms in Slater basis 
sets. However  of  the six cases he reported, only two represent an appreciable 
correction in the energy (greater than 10 -5 hartree). The first consisted of He with 
only one Slater function perturbed by the addition of a second Slater function. 
We shall refer to this as a 1~->2~ perturbation. The second case was a Be atom 
with four Slater functions perturbed by addition of a fifth, or 4~" -~ 5~. We studied 
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these same two cases employing the equat ions described above, however  
approximat ing  each Slater funct ion by an expansion in six gaussian functions.  
The results are shown in Table 1. In the case o f  He the Sadlej result is qualitatively 
correct, the error being primari ly a measure o f  the importance o f  the neglected 
third- and higher-order  terms. This relative accuracy  is to be expected f rom the 
absence o f  virtual orbitals in this case, which are not  treated in the Sadiej approach.  
For  the same reason approximat ions  I and I l i  must  be identical, as must  II ,  IV 
and V. However  the Be test case is much  different and represents a r igorous test 
for both  methods.  Here the correct  t reatment  o f  the virtual orbitals is seen to be 
critical. Not  only is the Sadlej result in error by a factor  o f  roughly  2.5 but 
approximat ions  I - IV,  which lack full virtual-orbital or thogonal izat ion and coup- 
ling, are even worse. However ,  as often seems to be the case for  atoms approxima-  
t ion V, which includes a full t reatment  o f  the virtual orbitals, gives almost  exactly 
the same result as would  be obtained in the larger basis. 

3.2. Sprit-valence test calculations o n  H20 

3.2.1. Energy corrections. As noted above, the test calculations using basis-incom- 
pleteness per turbat ion theory  that have been reported, thus far for  molecules have 
been quite different f rom cases o f  practical  interest in that  small Slater basis sets 
were employed  with the per turbing functions consisting o f  either one or two 
gaussian primitive funct ions centered along bonds.  Therefore we carried out a 
series o f  calculations to determine the applicabili ty to gaussian basis sets and 
to the addi t ion o f  several perturbing functions,  part icularly a tom-centered 
polar izat ion functions.  

As an initial example we computed  the energy o f  H20 in the 6-31G basis [12] 
and employing the molecular  structure opt imized in that basis. We then added  
as the per turbing funct ions a six-fold set o f  d gaussian primitives to the oxygen 

Table 1. Comparison of Sadlej [3] and McDowell methods for basis- 
incompleteness corrections to atomic energies a 

Approximation He Be 
lff~ 2ff 4 ~  5~ 

Sadl~ -0.006879 -0.000854 
I -0.007331 -0.000737 

II -0,007341 -0.000747 
III -0.007331 -0.000593 
IV -0.007341 -0.000594 
V -0,007341 -0.002269 

Exact difference -0.007341 -0.002269 
between basis sets 

a Energy in the larger basis set minus the energy in the smaller basis, 
in hartrees. The total energies to which these values are to be added 
are He: -2.846299 and Be: -14.564580 
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atom, forming the 6-31G* basis [13]. This we will refer to as the 6 -31G~ 6-31G* 
perturbation. The results for the five types of  approximations are shown in the 
first column of data in Table 2. Here we list the energy computed in the larger 
set minus that in the smaller set, in hartrees. The "exact"  value is the difference 
between the energies obtained from two full SCF calculations at the same 
molecular structure. Approximations I and I I  are seen to be only qualitatively 
correct. Approximations I I I  through V, which employ orthogonalization to the 
virtual orbitals, are much more accurate, with V being of considerably higher 
accuracy than the others. 

A second test of  computed energies consisted of the addition of both d functions 
on oxygen and p functions on hydrogen, to form the 6-31G** basis [14]. This 
will be termed the 6-31G~6-31G** perturbation. This is a stringent test of the 
method, since now the perturbing functions nearly double the size of  the basis. 
The results are shown in the second column of data in Table 2. The same trends 
are observed as for the 6-31G + 6-31 G* case. At each level the differences between 
approximated and exact energy differences are larger, although approximation 
V is still quite accurate, being in error by only 0.000034 hartrees or less than 0.1% 
of the difference. 

3.2.2. Molecular structure corrections. Thus far no property has been computed 
by basis-incompleteness perturbation methods except the energy. Therefore as 
an additional test we carried out an optimization of the molecular structure of 
H20 by minimizing the exact and approximated energies with respect to the OH 
bond lengths and the H O H  bond angle. Since analytic expressions for the 
derivatives of the approximated energy with respect to internal coordinates have 
not yet been developed, the optimization was performed by computing the 
energies over a grid of discrete points in the internal coordinate space. The results 
are listed in Table 3 which shows the differences in structural parameters,  i.e. 
values optimized in the larger basis minus those in the smaller basis. The general 

Table 2. Corrections to molecular energy a of H20 from the basis- 
incompleteness perturbations 6-31G ~ 6-31G* 
and 6-31G-~ 6-31G** 

Approximation 6-31G~ 6-31G* 6-31G~ 6-31G** 

I -0.020938 -0.034474 
II -0.021071 -0.034892 

1II -0.023927 -0.036540 
IV -0.024017 -0.036778 
V -0.024327 -0.037238 

Exact difference -0.024322 -0.037272 
between basis sets 

"Energy in the larger basis set minus the energy in the smaller basis 
in hartrees at the 6-31G optimized molecular structure. The total energy 
in the 6-31G basis, to which these values are to be added, is 
-75.985359 hartrees 
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Table 3. Effect on computed equilibrium structure a of H20 from the basis-incompleteness perturba- 
tions 6-31G~ 6-31G* and 6-31G--> 6-31G** 

Approximation 6-31G --> 6-31 G* 6-31G --> 6-31 G* * 

A OH lengl~h A HOH angle A OH length A HOH angle 
I -0.00084 -5.12 -0.00453 -4.69 

II -0.00080 -5.13 -0.00479 -4.76 
III -0.00242 -5.95 -0.00630 -5.38 
IV -0.00236 -5.94 -0.00626 -5.36 
V -0.00230 -6.06 -0.00653 -5.57 

Exact difference -0.00232 -6.04 -0.00658 -5.58 
between basis sets 

a Bond lengths and angles computed in the larger basis minus those in the smaller basis. Lengths in 
A, angles in degrees. The values in the 6-31G basis, to which these values are to be added, are 
OH=0.94963 A and HOH=lI1.55 ~ 

t rends  here  are  the same as seen for  the  energies  in Table  2 except  that  the  
6-31G-~6-31G** is not  cons is ten t ly  less accura te  than  6 -31G~6-31G*.  A p p r o x i -  
ma t ions  I and  I I  are surpr i s ing ly  p o o r  in p red ic t ing  correc t ions  to the  b o n d  
lengths.  A p p r o x i m a t i o n  V is qui te  accura te  in all cases,  the pe r tu rbed  6-31G basis  
p red ic t ing  the  b o n d  length  ob ta ined  the la rger  basis  sets with an accuracy  o f  
be t te r  t han  5x10  -5 ~ and  angles  wi th in  0.02 ~ 

4. C o n c l u s i o n s  

We have shown,  in Sect. 2 above,  that  the  very  power fu l  pe r tu rba t ion  a p p r o a c h  
d e v e l o p e d  by  M c D o w e l l  and  coworkers  can  be wri t ten  in a s imple  and  useful  
form, bo th  in terms o f  sp in-orb i ta l s ,  when the spin  var iab le  is expl ic i t ly  inc luded ,  
and  in te rms o f  orbi ta ls  as in the  case o f  res t r ic ted  H a r t r e e - F o c k  ca lcula t ions .  
In  the test  ca lcu la t ions  on the He  and  Be a toms  and  H20  our  f indings concur  
with those  o f  M c D o w e l l  and  Lewis [11] tha t  a p p r o x i m a t i o n s  I and  I I  are useful  
only  in the  specia l  case where  there  are no  vi r tual  orhi ta ls ,  as the  He  energies 
Shown in Table  1. The  ca lcu la t ion  on Be in c o m p a r i s o n  with Sadle j ' s  va lue  and  
with the  exact  resul t  shows that  inc lus ion  o f  v i r tual  orbi ta ls  is cr i t ical  to ob ta in ing  
a useful  level o f  accuracy ,  ( a l though  it requi res  typ ica l ly  ten t imes more  computa -  
t iona l  effort than  m e t h o d s  I and  I I  in which  vir tual  orbi ta ls  are neglec ted) .  
Fur ther ,  b a s e d  on these and  the test  ca lcu la t ions  on H20,  we can make  a s t ronger  
s ta tement :  s ince nea r ly  the  same c o m p u t a t i o n a l  effort is r equ i red  by  a p p r o x i m a -  
t ions  l I I ,  IV and  V with V none the less  inva r i ab ly  be ing  a p p r e c i a b l y  more  accura te  
than  I I I  and  IV for  bo th  the  energy and  s t ructura l  pa ramete r s ,  there  is in genera l  
no  advan tage  in us ing any  o f  the more  a p p r o x i m a t e  methods .  

Fo r  pe r tu rba t ions  connec t ing  the wide ly  e m p l o y e d  sp l i t -va lence  bas is  sets 6-31G, 
6-31 G* and  6-31G** a p p r o x i m a t i o n  V cons is ten t ly  gives results  o f  useful  accuracy. 
F o r  H20  the ca lcu la t ion  o f  to ta l  mo lecu la r  energy in the  6-31G basis  cor rec ted  
to 6-3 IG**  (6 -31G~6-31G**)  is in error  re la t ive  to a conven t iona l  S C F  ca lcu la t ion  
in the  la rger  basis  by  on ly  0 .000034har t rees  (0.089 k J / m o l ) ,  suggest ing that  



Perturbative corrections to basis incompleteness 141 

the method will be accurate enough for ab initio studies of thermodynamic 
quantities. Similarly the same approximation gives, in this case, the bond length 
accurate within 5x10-5 A and the bond angle to 0.02 ~ We believe much of the 
remaining error in the structural parameters computed employing approximation 
V is due to roundoff and similar numerical errors. Although test calculations 
employing approximation V on much larger systems are clearly needed, as well 
as efficient computer programs to determine its ultimate computational efficiency, 
it now appears that basis-incompleteness perturbation methods may prove to be 
valuable extensions of all ab initio methods based on basis-set expansions of 
molecular orbitals. 
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